Genomic selection in admixed and crossbred populations.
نویسندگان
چکیده
In livestock, genomic selection (GS) has primarily been investigated by simulation of purebred populations. Traits of interest are, however, often measured in crossbred or mixed populations with uncertain breed composition. If such data are used as the training data for GS without accounting for breed composition, estimates of marker effects may be biased due to population stratification and admixture. To investigate this, a genome of 100 cM was simulated with varying marker densities (5 to 40 segregating markers per cM). After 1,000 generations of random mating in a population of effective size 500, 4 lines with effective size 100 were isolated and mated for another 50 generations to create 4 pure breeds. These breeds were used to generate combined, F(1), F(2), 3- and 4-way crosses, and admixed training data sets of 1,000 individuals with phenotypes for an additive trait controlled by 100 segregating QTL and heritability of 0.30. The validation data set was a sample of 1,000 genotyped individuals from one pure breed. Method Bayes-B was used to simultaneously estimate the effects of all markers for breeding value estimation. With 5 (40) markers per cM, the correlation of true with estimated breeding value of selection candidates (accuracy) was greatest, 0.79 (0.85), when data from the same pure breed were used for training. When the training data set consisted of crossbreds, the accuracy ranged from 0.66 (0.79) to 0.74 (0.83) for the 2 marker densities, respectively. The admixed training data set resulted in nearly the same accuracies as when training was in the breed to which selection candidates belonged. However, accuracy was greatly reduced when genes from the target pure breed were not included in the admixed or crossbred population. This implies that, with high-density markers, admixed and crossbred populations can be used to develop GS prediction equations for all pure breeds that contributed to the population, without a substantial loss of accuracy compared with training on purebred data, even if breed origin has not been explicitly taken into account. In addition, using GS based on high-density marker data, purebreds can be accurately selected for crossbred performance without the need for pedigree or breed information. Results also showed that haplotype segments with strong linkage disequilibrium are shorter in crossbred and admixed populations than in purebreds, providing opportunities for QTL fine mapping.
منابع مشابه
Estimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کاملDetection of Genetic Differences between Holstein and Iranian North-West Indigenous Hybrid Cattles using Genomic Data
Extended Abstract Introduction and Objective: Selection to increase the frequency of new mutations useful only in some subpopulations leaves markers at the genome level. Most of these regions are related to genes and QTLs controlling significant economic traits. Material and Methods: In order to detection of genetic differences between Iranian northwestern crossbred and Holstein cattle breed,...
متن کاملAdmix'em: a flexible framework for forward-time simulations of hybrid populations with selection and mate choice
UNLABELLED We introduce a new forward-time simulator, Admix'em, that allows for rapid and realistic simulations of admixed populations with selection. Complex selection can be achieved through user-defined fitness and mating-preference probability functions. Users can specify realistic genomic landscapes and model neutral SNPs in addition to sites under selection. Admix'em is designed to simula...
متن کاملAccuracy of genomic breeding values for residual feed intake in crossbred beef cattle.
The benefit of using genomic breeding values (GEBV) in predicting ADG, DMI, and residual feed intake for an admixed population was investigated. Phenotypic data consisting of individual daily feed intake measurements for 721 beef cattle steers tested over 5 yr was available for analysis. The animals used were an admixed population of spring-born steers, progeny of a cross between 3 sire breeds ...
متن کاملAccuracy of genome-enabled prediction exploring purebred and crossbred pig populations.
Pig breeding companies keep relatively small populations of pure sire and dam lines that are selected to improve the performance of crossbred animals. This design of the pig breeding industry presents challenges to the implementation of genomic selection, which requires large data sets to obtain highly accurate genomic breeding values. The objective of this study was to evaluate the impact of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of animal science
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2010